
March 2012 Injection v5 Eoin Keary and Jim Manico Page 1

Injection Flaws

March 2012 Injection v5 Eoin Keary and Jim Manico Page 2

SQL Injection

Lack of query parameterization can be exploited
and used to execute arbitrary queries against back-
end databases

New malicious commands are added to application,

hence the term “injection”

Occurs when malicious untrusted input is used
within SQL queries being executed against back-
end application databases

 Injected SQL queries will run under the context of

the application account, allowing read and/or write
access to application data and even schema!

March 2012 Injection v5 Eoin Keary and Jim Manico Page 3

Data Retrieval: Allow an attacker to extract data from the

database. Exploits can include modifying the record selection
criteria of the SQL query or appending a user-specified query
using the SQL UNION directive. This type of exploit can also
be used to bypass poorly designed login mechanisms.

Data Modification: Allow attacker to write to database
tables. Can be used to modify or add records to the database.
(NOTE: Very dangerous and could result in data corruption!)
- DML

Database-Specific Exploits: Involve exploiting database-
specific functionality. Can potentially be used to execute
arbitrary commands on the database server operating
system. (Command Injection)

SQL Injection Attack Types

March 2012 Injection v5 Eoin Keary and Jim Manico Page 4

Where to find
error messages?

To see raw error
messages you must
uncheck Internet
Explorer’s default
setting (Tools ->
Internet Options-
>Advanced):
Show friendly HTTP
error messages.

SQL Error Messages

March 2012 Injection v5 Eoin Keary and Jim Manico Page 5

sql = “SELECT * FROM user_table WHERE username
= ‘” & Request(“username”) & “’ AND password =
‘” & Request(“password”) & ”’”

What the developer intended:
username = chip
password = password

SQL Query:
SELECT * FROM user_table WHERE username =
‘john’ AND password = ‘password’

Anatomy of SQL Injection Attack

March 2012 Injection v5 Eoin Keary and Jim Manico Page 6

sql = “SELECT * FROM user_table WHERE username
= ‘” & Request(“username”) & “’ AND password =
‘” & Request(“password”) & “’”
 (This is DYNAMIC sql – Bad)

What the developer did not intend is parameter values
like:
username = john
password = blah’ or ‘1’=‘1

SQL Query:
SELECT * FROM user_table WHERE username =
‘john’ AND password = ‘blah’ or ‘1’=‘1’

Since 1=1 is true and the AND is executed before the
OR, all rows in the users table are returned!

Anatomy of SQL Injection Attack

March 2012 Injection v5 Eoin Keary and Jim Manico Page 7

Attacks can occur even when variables
are not encapsulated within single quotes

sql = “SELECT * from users where
custnum=“ +
request.getParameter(“AccountNum”);

What happens if AccountNum is 1=1 or
<boolean True> above?

Called “Numeric SQL Injection”

SQL Injection without a Single Quote (‘)

March 2012 Injection v5 Eoin Keary and Jim Manico Page 8

 String building can be done when calling stored procedures as well
 sql = “GetCustInfo @LastName=“ +
request.getParameter(“LastName”);

 Stored Procedure Code

CREATE PROCEDURE GetCustInfo (@LastName VARCHAR(100))
AS
 exec(‘SELECT * FROM CUSTOMER WHERE LNAME=‘’’ + @LastName + ‘’’’)
GO

 (Wrapped Dynamic SQL)
 What’s the issue here…………

 If blah’ OR ‘1’=‘1 is passed in as the LastName value, the entire table will be
returned

 Remember Stored procedures need to be implemented safely.

'Implemented safely' means the stored procedure does not include
any unsafe dynamic SQL generation.

String Building to Call Stored Procedures

March 2012 Injection v5 Eoin Keary and Jim Manico Page 9

Identifying SQL Injection Points
 Insert a single apostrophe into application inputs to

invoke a database syntax error
 If a single apostrophe causes a generic error to be

returned, SQL injection may still be possible. Modify
the string to eliminate the syntax error to validate
that a database error is occurring
blah’--
blah’ OR ‘1’=‘1
blah’ OR ‘1’=‘2
Blah’%20’OR%20’1’=‘1
Blah’ OR 11;#

Trace all application input through the code to see

which inputs are ultimately used in database calls
 Identify database calls using SQL string building to

check for proper input validation

March 2012 Injection v5 Eoin Keary and Jim Manico Page 10

public void bad(HttpServletRequest request, HttpServletResponse response) throws Throwable
 {
 String data;

 Logger log_bad = Logger.getLogger("local-logger");

 /* read parameter from request */
 data = request.getParameter("name");

 Logger log2 = Logger.getLogger("local-logger");

 Connection conn_tmp2 = null;
 Statement sqlstatement = null;
 ResultSet sqlrs = null;

 try {
 conn_tmp2 = IO.getDBConnection();
 sqlstatement = conn_tmp2.createStatement();

 /* POTENTIAL FLAW: take user input and place into dynamic sql query */
 sqlrs = sqlstatement.executeQuery("select * from users where name='"+data+"'");

 IO.writeString(sqlrs.toString());
 }
 catch(SQLException se)
 {

Exploit is executed (Sink)

Code Review: Source and Sink

Input from request (Source)

March 2012 Injection v5 Eoin Keary and Jim Manico Page 11

public void doGet(HttpServletRequest req, HttpServletResponse res)
{
 String name = req.getParameter("username");
 String pwd = req.getParameter("password");
 int id = validateUser(username, password);
 String retstr = "User : " + name + " has ID: " + id;
 res.getOutputStream().write(retstr.getBytes());
}

private int validateUser(String user, String pwd) throws Exception
{
 Statement stmt = myConnection.createStatement();
 ResultSet rs;
 rs = stmt.executeQuery("select id from users where
 user='" + user + "' and key='" + pwd + "'");
 return rs.next() ? rs.getInt(1) : -1;
}

Code Review: Find the Vulns!

March 2012 Injection v5 Eoin Keary and Jim Manico Page 12

Defending Against SQL Injection

Validation using Known Good Validation
should be used for all input used in SQL
queries
.NET’s parameterized queries are extremely

resilient to SQL injection attacks, even in the
absence of input validation
Similar functionality exists for Java via

PreparedStatements and CallableStatements
Automatically limits scope of user input – cannot

break out of variable scope (i.e. it does the
escaping for you)
Performs data type checking on parameter values

Every web language has an API for
P t i d Q i !

March 2012 Injection v5 Eoin Keary and Jim Manico Page 13

Parameterized Queries ensure that an attacker is not able to
change the intent of a query, even if SQL commands are inserted
by an attacker.

Java EE – use PreparedStatement()

String query = "SELECT account_balance FROM user_data WHERE user_name = ? ";

PreparedStatement pstmt = connection.prepareStatement(query);
pstmt.setString(1, custname); ResultSet results = pstmt.executeQuery();

String query = "SELECT account_balance FROM user_data WHERE user_name = ?";
try
{
OleDbCommand command = new OleDbCommand(query, connection);
command.Parameters.Add(new OleDbParameter("customerName", CustomerName Name.Text));
OleDbDataReader reader = command.ExecuteReader(); // …
}
catch (OleDbException se) {
// error handling
}

Safe C# .NET Prepared Statement Example

Best Practice: Parameterized Queries

March 2012 Injection v5 Eoin Keary and Jim Manico Page 14

.NET Parameterized Query

Dynamic SQL: (Not so Good)
string sql = "SELECT * FROM User WHERE Name = '" + NameTextBox.Text
+ "' AND Password = '" + PasswordTextBox.Text + "'";

Parameterized Query: (Nice, Nice!)
SqlConnection objConnection = new SqlConnection(_ConnectionString);
objConnection.Open();
SqlCommand objCommand = new SqlCommand(
 "SELECT * FROM User WHERE Name = @Name AND Password =
 @Password", objConnection);
objCommand.Parameters.Add("@Name", NameTextBox.Text);
objCommand.Parameters.Add("@Password", PasswordTextBox.Text);
SqlDataReader objReader = objCommand.ExecuteReader();
if (objReader.Read()) { ...

March 2012 Injection v5 Eoin Keary and Jim Manico Page 15

Java Prepared Statement

Dynamic SQL: (Not so Good)
String sqlQuery = “UPDATE EMPLOYEES SET SALARY = ‘ +
 request.getParameter(“newSalary”) + ‘ WHERE ID = ‘ +
 request.getParameter(“id”) + ‘”;

PreparedStatement: (Nice)
double newSalary = request.getParameter(“newSalary”) ;

int id = request.getParameter(“id”);

PreparedStatement pstmt = con.prepareStatement("UPDATE EMPLOYEES
 SET SALARY = ? WHERE ID = ?");

pstmt.setDouble(1, newSalary);

pstmt.setInt(2, id);

March 2012 Injection v5 Eoin Keary and Jim Manico Page 16

Language specific recommendations:

•Java EE – use PreparedStatement() with bind variables

•.NET – use parameterized queries like SqlCommand() or OleDbCommand()
with bind variables

•PHP – use PDO with strongly typed parameterized queries (using
bindParam())

•Hibernate - use createQuery() with bind variables (called named
parameters in Hibernate)

Unsafe HQL Statement Query (Hibernate)

unsafeHQLQuery = session.createQuery("from Inventory where productID='"+userSuppliedParameter+"'");

Query safeHQLQuery = session.createQuery("from Inventory where productID=:productid");

safeHQLQuery.setParameter("productid", userSuppliedParameter);

Safe version of the same query using named parameters

Best Practice: Parameterized Queries

March 2012 Injection v5 Eoin Keary and Jim Manico Page 17

string sql = "SELECT * FROM Customers WHERE CustomerId = @CustomerId";

SqlCommand command = new SqlCommand(sql); command.Parameters.Add(new SqlParameter("@CustomerId",

System.Data.SqlDbType.Int));

command.Parameters["@CustomerId"].Value = 1;

ASP.NET

RUBY – Active Record

Create
Project.create!(:name => 'owasp')
Read
Project.all(:conditions => "name = ?", name)
Project.all(:conditions => { :name => name })
Project.where("name = :name", :name => name)
Update
project.update_attributes(:name => 'owasp')
Delete
Project.delete(:name => 'name')

Best Practice: Parameterized Queries

March 2012 Injection v5 Eoin Keary and Jim Manico Page 18

<cfquery name = "getFirst" dataSource = "cfsnippets">
 SELECT * FROM #strDatabasePrefix#_courses WHERE intCourseID =
 <cfqueryparam value = #intCourseID# CFSQLType = "CF_SQL_INTEGER">
</cfquery>

Cold Fusion

my $sql = "INSERT INTO foo (bar, baz) VALUES (?, ?)";

my $sth = $dbh->prepare($sql);

$sth->execute($bar, $baz);

Perl - DBI

Best Practice: Parameterized Queries

March 2012 Injection v5 Eoin Keary and Jim Manico Page 19

SQL Injection – Lab/Demo

March 2012 Injection v5 Eoin Keary and Jim Manico Page 20

LAB: SQL injection

http://127.0.0.1/dvwa/vulnerabilities/sqli/

The UserID field here is vulnerable to SQLI

Attempt to throw an error
Hint:

SELECT first_name, last_name FROM users WHERE user_id =
'o’brien'

Check out the SQLI Lab sheet….(on your

USB Key)….No peeking.

March 2012 Injection v5 Eoin Keary and Jim Manico Page 21

Defending Against SQL Injection

Stored procedures provide several benefits:
Allows database permissions to be restricted to only

EXECUTE on stored procedures (permission
inheritance)

Promotes code re-use (less error prone and easier to
maintain)

They must not contain dynamic SQL
Caution: Stored Procedures themselves may be

injectable!

Query Parameterization Needed:
When creating SQL
When calling a a Stored Procedure
When building a Stored Procedure

March 2012 Injection v5 Eoin Keary and Jim Manico Page 22

Restricting Default Database Permissions

Delete all default user accounts that are not
used. Ensure that strong/complex passwords
are assigned to known user accounts.

Restrict default access permissions on all

objects. The application user should either be
removed from default roles (i.e. public), or the
underlying role permissions should be
stripped

Disable dangerous/unnecessary functionality

within the database server (ADHOC provider
access and xp_cmdshell in Microsoft SQL
S)

March 2012 Injection v5 Eoin Keary and Jim Manico Page 23

Database Principle of Least Privilege

 Database accounts used by the application should have the
minimal required privileges.

 If there is a SQLI vuln we may be able to limit the damage
that an attacker might do.

 DB Query
Method

Privileges Required by App Privileges that can be revoked

Stored Procedure

EXECUTE on the stored procedure

SELECT, INSERT, UPDATE, DELETE on the
underlying Tables
EXECUTE on system stored procedures
SELECT on system tables and views

Dynamic SQL

SELECT on the table (read-only)
- OR -
SELECT / UPDATE / INSERT /
DELETE on the table
(read / write)

EXECUTE on system stored procedures
SELECT on system tables and views

March 2012 Injection v5 Eoin Keary and Jim Manico Page 24

OS Command Injection

March 2012 Injection v5 Eoin Keary and Jim Manico Page 25

Operating System Interaction

Applications often pass parameters that are

ultimately used to interface with the server
file system and/or operating system

If not validated properly, parameters may be

manipulated to provide unauthorized read /
write / execute access to server files

Many applications may allow users to upload

files

March 2012 Injection v5 Eoin Keary and Jim Manico Page 26

Arbitrary File Upload

Uploading malicious files to web-accessible
directories can be used to compromise the
underlying operating system and/or application
Malicious binaries to executable web-accessible

directories (ie. /cgi-bin/)
Malicious scripts to web-accessible directories with

script mappings (can be any or all directories)
Overwriting sensitive system files (/etc/passwd,

/etc/shadow)

Uploading large files to the web server can be
used to launch a denial-of-service attack by
filling web server drives

March 2012 Injection v5 Eoin Keary and Jim Manico Page 27

File Access via Parameters

Calling other files via input parameters
can expose the web server to
unauthorized file access

/default.jsp?page=about.jsp OK
/default.jsp?page=../../../../etc/passwd NOT

OK

Compound this issue with excessive app

permissions:
/default.jsp?page=../../../../etc/shadow OH

NO!!!

March 2012 Injection v5 Eoin Keary and Jim Manico Page 28

Injection Flaws –Example

Document retrieval

sDoc = Request.QueryString("Doc")
if sDoc <> "" then
 x = inStr(1,sDoc,".")
 if x <> 0 then
 sExtension = mid(sDoc,x+1)
 sMimeType = getMime(sExtension)
 else
 sMimeType = "text/plain"
 end if

 set cm = session("cm")
 cm.returnBinaryContent application("DOCUMENTROOT") & sDoc,

sMimeType
 Response.End
end if

Source

Sink

March 2012 Injection v5 Eoin Keary and Jim Manico Page 29

Command Injection
 Web applications may use input parameters as arguments

for OS scripts or executables
 Almost every application platform provides a mechanism to

execute local operating system commands from application
code

 Perl: system(), exec(), backquotes(``)
 C/C++: system(), popen(), backquotes(``)
 ASP: wscript.shell
 Java: getRuntime.exec
 MS-SQL Server: master..xp_cmdshell
 PHP : include() require(), eval() ,shell_exec

 Most operating systems support multiple commands to be

executed from the same command line. Multiple
commands are typically separated with the pipe “|” or
ampersand “&” characters

March 2012 Injection v5 Eoin Keary and Jim Manico Page 30

Testing for OS Interaction
Note any parameters that appear to be

referencing files or directory paths. Also note
any web server file names or paths that
incorporate user specified data

Parameters should be tested individually to see if

file system related errors appear
File not found, Cannot open file, Path not found, etc.

 Input parameters should be manipulated to

include references to other known files and
directories
 ../../../etc/passwd
 ../../../winnt/win.ini
 ../../../winnt/system32/cmd.exe

March 2012 Injection v5 Eoin Keary and Jim Manico Page 31

Testing for OS Interaction
If the application allows file upload, try and

determine where the files are sent. If sent to
web accessible directories, upload malicious
files and/or script and see if they can be
executed

If not, try to determine the local path to the

web root directory and traverse into the
directory by manipulating the file name
../../../home/apache/htdocs/test.txt
..\..\..\inetpub\wwwroot\test.txt

Try appending operating system commands to

the end of application parameters. Remember
to encode the “&”

March 2012 Injection v5 Eoin Keary and Jim Manico Page 32

Lab - OS file system interaction

http://127.0.0.1/dvwa/vulnerabilities/exec/

March 2012 Injection v5 Eoin Keary and Jim Manico Page 33

PHP Source – Cmd Exec

<?php

if(isset($_POST['submit'])) {

 $target = $_REQUEST['ip'];

 // Determine OS and execute the ping command.
 if (stristr(php_uname('s'), 'Windows NT')) {

 $cmd = shell_exec('ping ' . $target);
 echo '<pre>'.$cmd.'</pre>';

 } else {

 $cmd = shell_exec('ping -c 3 ' . $target);
 echo '<pre>'.$cmd.'</pre>';

 }

}
?>

March 2012 Injection v5 Eoin Keary and Jim Manico Page 34

Defenses Against OS Interaction Attacks

 Exact Match Validation should be used to ensure that only
authorised files are requested. If this is not feasible, then
Known Good Validation or Known Bad Validation should be
used on parameter values and characters typically used to
alter file system paths should be rejected. (.. / %)

 Bounds Checking should also be performed to ensure that

uploaded file sizes do not exceed reasonable limits

 In general, avoid using parameters to interface with the
file system when at all possible

 Uploaded files should be placed into a directory that is not

web accessible and the application should handle all file
naming (regardless of what the original file name was)

March 2012 Injection v5 Eoin Keary and Jim Manico Page 35

 For file access using application parameters, consider
using application logic to correlate parameter values
to file system paths or objects if dynamic file access
necessary. This can typically be done using an array
or hash table.

 Always implement conservative read, write, and

execute access control lists at the OS level to restrict
what files can be accessed by the application. (more
on this later)

 If possible, verify uploaded file types by inspecting

file headers. Native controls for validating file types
are available in certain development platforms (.NET)

 Store in application constants, where possible

Defenses Against OS Interaction Attacks

March 2012 Injection v5 Eoin Keary and Jim Manico Page 36

LDAP Injection

March 2012 Injection v5 Eoin Keary and Jim Manico Page 37

LDAP injection

 Lightweight Directory Access Protocol

 Used for accessing information directories

 Frequently used in web apps to help users search for
specific information on the internet.

 Also used for authentication systems.

March 2012 Injection v5 Eoin Keary and Jim Manico Page 38

LDAP Injection
Technique for exploiting web apps using

LDAP statements without first properly
validating that data

Similar techniques involved in SQL injection

also apply to LDAP injection

Could result in the execution of arbitrary
commands such as granting permissions to
unauthorized queries or content modification
inside the LDAP tree

Can determine how queries are structured by

sending logical operators (e.g. OR, AND, |, &,
%26) and seeing what errors are returned

March 2012 Injection v5 Eoin Keary and Jim Manico Page 39

LDAP Injection Example

 The following code is responsible to catch input value and generate a
LDAP query that will be used in LDAP database:

<input type="text" size=20 name="userName">Insert the username</input>

 Underlying code for the LDAP query:

String ldapSearchQuery = "(cn=" + $userName + ")";

System.out.println(ldapSearchQuery);

 Variable $username is not validated
 Entering “*” may return all usernames in the directory
 Entering “eoin) (| (password = *))” will generate the following code and

reveal eoinspassword:

(cn = eoin) (| (password = *))

March 2012 Injection v5 Eoin Keary and Jim Manico Page 40

Defenses Against LDAP Injection

Data input validation of all client-supplied data!

Use known good validation with a regular
expression
Only allow letters and numbers (or just numbers)
^[0-9a-zA-Z]*$

If other characters are needed, convert them to

HTML substitutes ("e, >)

Outgoing data validation

Access control to the data in the LDAP directory

March 2012 Injection v5 Eoin Keary and Jim Manico Page 41

OWASP Injection Resources
LDAP Injection
https://www.owasp.org/index.php/LDAP_injection
https://www.owasp.org/index.php/Testing_for_LD

AP_Injection_(OWASP-DV-006)

SQL Injection
https://www.owasp.org/index.php/SQL_Injection_

Prevention_Cheat_Sheet
https://www.owasp.org/index.php/Abridged_SQL_

Injection_Prevention_Cheat_Sheet

Command Injection
https://www.owasp.org/index.php/Command_Inje

ction

https://www.owasp.org/index.php/LDAP_injection
https://www.owasp.org/index.php/Testing_for_LDAP_Injection_(OWASP-DV-006)
https://www.owasp.org/index.php/Testing_for_LDAP_Injection_(OWASP-DV-006)
https://www.owasp.org/index.php/SQL_Injection_Prevention_Cheat_Sheet
https://www.owasp.org/index.php/SQL_Injection_Prevention_Cheat_Sheet
https://www.owasp.org/index.php/Abridged_SQL_Injection_Prevention_Cheat_Sheet
https://www.owasp.org/index.php/Abridged_SQL_Injection_Prevention_Cheat_Sheet
https://www.owasp.org/index.php/Command_Injection
https://www.owasp.org/index.php/Command_Injection

	Injection Flaws
	SQL Injection
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Identifying SQL Injection Points
	Slide Number 10
	Slide Number 11
	Defending Against SQL Injection
	Slide Number 13
	.NET Parameterized Query
	Java Prepared Statement
	Slide Number 16
	Slide Number 17
	Slide Number 18
	SQL Injection – Lab/Demo
	LAB: SQL injection
	Defending Against SQL Injection
	Restricting Default Database Permissions
	Database Principle of Least Privilege
	Slide Number 24
	Operating System Interaction
	Arbitrary File Upload
	File Access via Parameters
	Injection Flaws –Example
	Command Injection
	Testing for OS Interaction
	Testing for OS Interaction
	Lab - OS file system interaction
	PHP Source – Cmd Exec
	Defenses Against OS Interaction Attacks
	Slide Number 35
	Slide Number 36
	LDAP injection
	LDAP Injection
	LDAP Injection Example
	Defenses Against LDAP Injection
	OWASP Injection Resources

